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the complete genome sequencing of Streptomyces coeli-
color A3(2) which revealed an unexpected potential of this 
organism to synthesize natural products undetected until 
then by classical screening methods. Since then, analysis of 
sequenced genomes from numerous Streptomyces species 
has shown that a single species can carry more than 30 sec-
ondary metabolite gene clusters, reinforcing the idea that 
the biosynthetic potential of this bacterial genus is far from 
being fully exploited. This review highlights our knowl-
edge on the potential of Streptomyces ambofaciens ATCC 
23877 to synthesize natural products. This industrial strain 
was known for decades to only produce the drug spiramy-
cin and another antibacterial compound, congocidine. Min-
ing of its genome allowed the identification of 23 clusters 
potentially involved in the production of other secondary 
metabolites. Studies of some of these clusters resulted in 
the characterization of novel compounds and of previously 
known compounds but never characterized in this Strepto-
myces species. In addition, genome mining revealed that 
secondary metabolite gene clusters of phylogenetically 
closely related Streptomyces are mainly species-specific.

Keywords  Genome mining · Natural products · 
Biosynthetic pathways · Streptomyces ambofaciens

Introduction

The emergence of the genomics era during the last dec-
ade has given a fresh boost in the field of drug discovery 
from microbial natural products (also called secondary 
metabolites). Before what can be called a “revolution” 
in this field, approaches for searching for new bioac-
tive molecules were mainly based on (high-throughput) 
screening of extracts of potential producers either by 

Abstract  Since the discovery of the streptomycin pro-
duced by Streptomyces griseus in the middle of the last 
century, members of this bacterial genus have been largely 
exploited for the production of secondary metabolites with 
wide uses in medicine and in agriculture. They have even 
been recognized as one of the most prolific producers of 
natural products among microorganisms. With the onset 
of the genomic era, it became evident that these microor-
ganisms still represent a major source for the discovery of 
novel secondary metabolites. This was highlighted with 
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compound-guided or bioactivity-guided approaches 
[70]. Nevertheless, discovery of new molecules by meth-
ods such as the bioactivity-guided approach has shown 
limitations over the years, partly because of a problem of 
recurrence, i.e. the re-isolation of already known com-
pounds. For example, streptothricin and streptomycin 
are respectively found in about 10 and 1 % of randomly 
collected soil actinomycetes, which are among the most 
prolific microorganisms producing natural products 
[4]. It was thus believed that microorganisms were an 
exhausted source of natural products and this is one of 
the reasons for the withdrawal of many pharmaceuti-
cal companies from the natural product drug discovery 
programmes.

In recent years, however, genome sequencing has 
revealed that microorganisms still represent an important 
source for novel natural products by disclosing a so far 
hidden secondary metabolome. In the case of the bacte-
ria of the Streptomyces genus, which are the topic of this 
review, the analysis of the first completely sequenced 
genome, the genome of Streptomyces coelicolor A3(2), 
has indeed revealed an unsuspected and unprecedented 
potential to synthesize secondary metabolites. Indeed, 
whereas only five metabolites were identified over 
50 years by classical screening approaches, genome anal-
ysis has shown that S. coelicolorA3(2) had the capabil-
ity to produce nearly 20 additional natural products [7]. 
Since then, several of these compounds have been char-
acterized like the tetrapeptide iron chelator coelichelin 
[38] or the novel polyketide alkaloid coelimycin P1 syn-
thesized by a cryptic type I PKS gene cluster [20]. This 
situation is not specific to S. coelicolor A3(2). Genome 
sequencing (complete or partial) of numerous Streptomy-
ces species has indeed shown that they all contain a large 
number of cryptic secondary metabolite gene clusters (up 
to 30, sometimes more). In addition, thanks to the genome 
mining, several biosynthetic gene clusters of previously 
known compounds have been identified such as the clus-
ter responsible for the production of the siderophores des-
ferrioxamines [6].

The large number of secondary metabolite gene clus-
ters compared to the number of metabolites known to be 
produced by a single strain is usually explained by the 
fact that some of these gene clusters are cryptic, i.e. not 
expressed or the products are formed at a level too low 
to be detected in laboratory growth conditions. This rep-
resents the major bottleneck to get access to potentially 
novel compounds. Several methods have been developed 
to activate these silent gene clusters, such as overexpres-
sion of a pathway-specific activator, manipulation of 
global transcriptional regulators, mutation in the RNA 
polymerase subunits, ribosome engineering, uses of his-
tone deacetylase inhibitors, cultures in different growth 

conditions or heterologous expression in a host engineered 
for expression. These methods have been described in dif-
ferent reviews (see in this issue [22, 53, 58, 75] and for 
example [2, 21, 48, 52, 69]) and will therefore not be pre-
sented here.

Streptomyces ambofaciens ATCC 23877 is an indus-
trial strain isolated in the early 1950s [56] and exploited 
for the production of the macrolide spiramycin, which 
is used in human medicine as an antibacterial agent and 
for the treatment of Toxoplasma infections. In 1952 S. 
ambofaciens ATCC 23877 was also discovered to produce 
another antibiotic, the pyrrolamide congocidine, which is 
too cytotoxic for clinical uses. The 16S RNA sequence 
analysis revealed that S. ambofaciens ATCC 23877 is very 
closely related to S. coelicolor A3(2) (only 1.1  % diver-
gence) [13]. Pairwise genome comparison revealed a high 
level of synteny between the two species, except for two 
inversion events centred on the origin of replication. The 
divergence clusters in the terminal regions of the linear 
chromosome [13]. Nevertheless, as presented below, more 
than half (14) of the 25 secondary metabolite gene clus-
ters identified in S. ambofaciens ATCC 23877 (Fig. 1) are 
not conserved in S. coelicolor A3(2) and reciprocally. And 
interestingly, among the natural products synthesized by 
each species, the specificity concerns mainly the arsenal of 
antibiotics. Among the shared clusters, some have already 
been characterized in either one or both species, including 
clusters responsible for the biosynthesis of siderophores 
(desferrioxamines and coelichelin), of volatile terpenoids 
[geosmin, 2-methylisoborneol (MIB), albaflavenone] or 
of carotenoids (already described in [1]). Altogether, this 
showed that although closely related to S.  coelicolor, 
S. ambofaciens represents a source for novel bioactive sec-
ondary metabolites.

Analysis of genome mined secondary metabolite gene 
clusters

Identification of the congocidine cluster and full 
characterization of the spiramycin cluster

As described above, S. ambofaciens ATCC 23877 was 
known to produce two antibacterial compounds, the mac-
rolide spiramycin and the pyrrolamide congocidine [56]. 
However, the cluster responsible for the production of con-
gocidine had never been identified and the one involved 
in the biosynthesis of spiramycin was only partially char-
acterized [17, 60] prior to the onset of the S. ambofaciens 
genome sequencing. Mining the genome of this strain 
allowed the identification and full characterization of these 
clusters. In addition, it revealed the original biosynthetic 
pathway of the pyrrolamide antibiotic.
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Spiramycin

Spiramycins I, II and III are 16-membered ring macrolide 
antibiotics used in human therapeutics as antibacterial and 
antiparasitic agents (active against Toxoplasma spp.) [12, 

57]. They comprise a core macrolactone ring (platenolide 
I), to which two amino sugars (mycaminose, forosamine) 
and one neutral sugar (mycarose) are attached (Fig. 2).

Spiramycin biosynthesis has been studied for more than 
30  years and the gene cluster directing this biosynthesis 
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Fig. 1   Schematic representation of the linear chromosome of S. 
ambofaciens ATCC 23877 and location of the secondary metabolite 
gene clusters identified so far. Clusters are indicated by filled circles. 
The colours correspond to the type of genes found in the cluster. 

Metabolites common to S. ambofaciens and S. coelicolor are under-
lined. Metabolites specific to S. ambofaciens are in blue. The black 
arrows at the extremities of the chromosomal arms symbolize the ter-
minal inverted repeats (TIRs)
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Fig. 2   Streptomyces ambofaciens ATCC 23877 spiramycin biosynthetic gene cluster. a Genetic organisation of the spiramycin gene cluster. b 
Chemical structure of spiramycin
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(srm cluster) was isolated prior to S. ambofaciens ATCC 
23877 genome sequencing [30, 60]. Involvement of this 
gene cluster in spiramycin production has been established 
by inactivating several genes [30, 60]. The srm cluster com-
prises 41 genes spanning an 84-kb region. Among these 
genes, 36 are involved in spiramycin biosynthesis, two 
are responsible for spiramycin biosynthesis regulation and 
three confer spiramycin resistance.

The spiramycin macrolactone backbone is synthesized 
by a PKS enzyme comprising five subunits (srm8 to srm12) 
organized in 8 modules and 36 domains, with the ketore-
ductase domain of module 4 probably being inactive [34]. 
Apart from the classical malonyl-CoA and methylmalonyl-
CoA precursors, this PKS also incorporates ethylmalonyl-
CoA and methoxymalonyl-CoA. Enzymes involved in the 
biosynthesis of these extender units are encoded within 
the srm cluster: Srm4, a putative crotonyl-CoA reductase 
probably participates in the synthesis of ethylmalonyl-CoA 
and Srm3, Srm34, Srm35, Srm36 and Srm37 are likely 
involved in methoxymalonyl-acyl carrier protein biosynthe-
sis (Fig. 2).

After the biosynthesis of the macrolactone ring (plate-
nolide I), this intermediate undergoes several post-PKS 
modifications, including oxidation of the C19 methyl 
group, the reduction of the C9 keto group, the attachment 
of the mycaminose, forosamine and mycarose sugars, and 
the acylation of the C3 hydroxyl group to yield spiramy-
cin II and III. All genes required for the synthesis of the 
three sugars mycaminose, forosamine and mycarose from 
glucose-1-phosphate are present in the spiramycin gene 
cluster. We recently identified the genes involved in most 
post-PKS tailoring steps [49, 50]. On the basis of gene 
deletions and LC–MS-MS analyses, we proposed the 
following timeline for these various steps: platenolide I 
is first reduced at the C9 position by Srm26. The result-
ing molecule (platenolide II) is then glycosylated by 
Srm5 (addition of mycaminose). The C19 methyl is sub-
sequently oxidized by Srm13. The successive additions 
of forosamine and mycarose are next catalysed by the 
Srm29 and Srm38 glycosyltransferases, respectively. 
Acylation of the C3 hydroxyl group of spiramycin I, 
yielding spiramycins II and III, is most likely the last 
step of the synthesis and catalysed by Srm2. Two out of 
three glycosyltransferases involved in spiramycin biosyn-
thesis, Srm5 and Srm29, require auxiliary proteins for 
their activity. The auxiliary protein Srm6 interacts only 
with Srm5 (mycaminosyltransferase) whereas the other 
one, Srm28, interacts efficiently with Srm5 and Srm29 
(forosaminyltransferase) [50].

Two srm genes are involved in resistance to spiramycin, 
srm1 and srm23. Srm1 (formerly SrmD) is a 23S rRNA 
methyltransferase (unpublished results) preventing the 
binding of spiramycin to its ribosomal target and Srm23 

(formerly SrmB) is the cytoplasmic ATP-binding com-
ponent of an ABC transporter [61]. A third gene, srm41, 
encodes a putative glycosidase that may be involved in 
spiramycin reactivation.

Two srm genes, srm22 (formerly srmR) and srm40, 
are involved in the regulation of spiramycin biosynthesis. 
Srm22 is a transcriptional activator controlling the tran-
scription of Srm40. Srm40, a homologue of the tylosin 
transcriptional activator TylR, is the pathway-specific acti-
vator that controls the expression of all srm genes except 
for srm22 and srm25 [17, 29].

Congocidine

Congocidine (also called netropsin) belongs to the fam-
ily of pyrrolamide antibiotics characterized by a 4-amino-
pyrrole-2-carboxyl moiety. Congocidine was first discov-
ered in 1951 by Finlay et al. [16] from a culture extract of 
Streptomyces netropsis. Shortly after, in 1952, Cosar et al. 
[15] reported its production by S.  ambofaciens. Members 
from the pyrrolamide family, which includes distamycin, 
kikumycins or pyrronamycins, bind non-covalently (except 
for pyrronamycin B, which probably binds covalently) into 
the minor groove of DNA with some sequence specificity 
(a succession of 4 or more A/T bases). This endows them 
with biological activities such as antibacterial, antiviral or 
antitumour activities, but also renders them too toxic for 
any therapeutic use.

Although the chemical characterization of the first 
members of the pyrrolamide family was described almost 
60  years ago, no pyrrolamide biosynthetic gene cluster 
or pathway was known when we reported the identifica-
tion and characterization of the congocidine biosynthetic 
gene cluster (cgc) in S. ambofaciens in 2009 [26]. The cgc 
cluster is located in one of the variable extremities of the 
S. ambofaciens chromosome (Fig. 1), in a genomic island 
specific to S. ambofaciens situated in a region otherwise 
syntenic with the chromosome of S. coelicolor which does 
not produce congocidine. The cgc gene cluster is composed 
of 22 genes (cgc1 to cgc22) (Fig. 3), comprising one regu-
latory gene (cgc1) and two resistance genes (cgc20 and 
cgc21), encoding the two subunits of an ABC transporter 
homologous to NetP1 and NetP2 conferring congocidine 
resistance in S. netropsis [65]. The 19 remaining cgc genes 
are involved in the biosynthesis of the precursors and in the 
assembly of the molecule.

Three precursors have been identified for the biosyn-
thesis of congocidine: guanidinoacetate, 3-aminopropi-
onamidine and 4-acetamidopyrrole-2-carboxylate. This 
last precursor, common to all pyrrolamides, is synthesized 
from N-acetylglucosamine-1-phosphate. Its biosynthesis 
involves several carbohydrate processing enzymes and con-
stitutes the first example of a pyrrole moiety derived from 
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a carbohydrate molecule [40]. The biosynthetic pathways 
of the two other precursors, guanidinoacetate and 3-amino-
propionamidine, remain to be established.

Congocidine is assembled by an atypical nonribosomal 
peptide synthetase (NRPS) comprising one free-standing 
module (Cgc18) and four single-domain proteins (two 
condensation domains, Cgc2 and Cgc16, one peptidyl car-
rier protein Cgc19 and an acyl-CoA synthetase Cgc22). 
Although unusual, this NRPS architecture appears to be 
well suited for the polymeric assembly of 4-aminopyr-
role-2-carboxylic acid occurring during the biosynthesis 
of pyrrolamides (for a congocidine biosynthetic assem-
bly model, see [26]). This arylamine pyrrole precursor 
is probably toxic for the cell and is not observed free in 
solution in a congocidine assembly impaired mutant, con-
trary to 4-acetamidopyrrole-2-carboxylate. Thus, 4-aceta-
midopyrrole-2-carboxylate is probably loaded onto the 
NRPS and deacetylation occurs on the PCP-bound mol-
ecule, before condensation with the other substrates can 
take place.

New secondary metabolites identified from genome mining

Analysis of the S. ambofaciens ATCC 23877 genome 
sequence highlighted the presence of 14 secondary 
metabolite gene clusters specific to S. ambofaciens ATCC 
23877, or at least not conserved in the closely related spe-
cies S. coelicolor A3(2). Within these clusters, 10 could 
not be associated with any product or a predicted product. 
Study of two of these clusters allowed the identification 
of new compounds produced by S. ambofaciens includ-
ing a novel macrolide with promising antiproliferative 
activities.

Kinamycins

Among the clusters identified from genome sequence anal-
ysis, a type II PKS gene cluster located within the 200-kb-
long terminal inverted repeats (TIRs) of the chromosome 
(Fig. 1), a structure characteristic of the linear replicons in 
Streptomyces, suggested that S. ambofaciens ATCC 23877 
had the potential to synthesize an additional antibiotic 
besides spiramycin and congocidine. This duplicated clus-
ter, named alp cluster (see below, Fig. 4), covers a region 
of 30 kb and encompasses 27 ORFs and was predicted to 
be responsible for the biosynthesis of an aromatic polyke-
tide belonging to the angucyclinone family (the name alp 
comes from angucyclinone-like polyketide) [54]. The alp 
cluster was not expected to govern the biosynthesis of an 
angucycline antibiotic because it does not contain genes 
involved in the biosynthesis or the transfer of sugar moie-
ties (angucyclinones are sugarless compounds in contrast 
to angucyclines). In addition, the region of 12 genes span-
ning from alpL2 to alpG and including the alpABC locus 
which encodes the minimal PKS [including three subunits, 
a β-ketosynthase (KS), a chain length factor (CLF) and an 
acyl carrier protein (ACP), and responsible for the assem-
bly of the polyketide chain] is syntenic with the partially 
characterized kin cluster of Streptomyces murayamaensis 
responsible for the biosynthesis of the kinamycin angucy-
clinone antibiotics ([24], accession number AY228175).

The alp cluster was shown to be transcriptionally active 
under standard growth conditions [54]. The identifica-
tion of the product(s) of the alp gene cluster was based on 
deletion of the minimal PKS genes and comparison of the 
mutant strain with the wild-type strain for their antibac-
terial activities under different growth conditions. On a 
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specific medium, the wild-type strain produced an antibac-
terial compound active against Bacillus subtilis whereas the 
mutant did not [54]. In addition, an orange and diffusible 
pigment was associated with the presence of a functional 
alp cluster. This pigment was shown to be distinct from the 
antibacterial compound and is likely either a degradation 
or a modification product of the antibacterial compound 
[10, 54]. Although it was straightforward to link a pheno-
type to the alp cluster, identification of this new antibiotic 
produced by S.  ambofaciens ATCC 23877 was compli-
cated because of the narrow time period of production of 
the bioactive molecule and by its instability [11, 54]. Con-
sequently, the purification of sufficient material for struc-
tural elucidation was challenging. A strategy based on the 
manipulation of the regulatory network was developed. 
Sequence analysis has revealed the presence of no less than 
five regulatory genes (alpT, alpU, alpV, which are mem-
bers of the SARP (Streptomyces antibiotic regulatory pro-
teins) family and alpW and alpZ which respectively belong 
to the pseudo GABR (γ-butyrolactone receptor) family 
and GABR family) within the alp cluster. Study of each 
of these genes defined their respective role [3, 10, 11] and 
characterized the complex regulatory cascade controlling 
the expression of the alp biosynthetic genes [11]. Among 

these genes, alpW encodes a product acting as a key late 
repressor of the cellular control of the production of the 
antibacterial compound and orange pigment. Indeed, AlpW 
accumulates in the cell during the phase of antibiotic pro-
duction and then represses in particular the expression of 
alpV, an essential pathway-specific activator required for 
activation of the alp structural genes [3], thus turning off 
the expression of the biosynthetic genes [11]. In fact, the 
deletion of the two copies of alpW led to the deregulation 
of the regulatory pathway and to a mutant strain which 
persisted in antibiotic production after initial onset of its 
biosynthesis. Consequently, this strain allowed purifica-
tion of sufficient material for structure elucidation. Three 
angucyclinones were purified and identified as members 
of the kinamycin family [23]: the kinamycin C, D and the 
epoxy-kinamycin FL120B′ [11]. These diazo-substituted 
benzo[b]fluorene antibiotics are particularly interesting as 
potential anticancer agents [25, 51] and therefore the access 
to the first complete kinamycin gene cluster will provide 
the opportunity to generate new derivatives with improved 
antitumour activity by genetic manipulation.

In addition to the discovery of S. ambofaciens ATCC 
23877 as a kinamycin producer, the genome mining high-
lights an original architecture of the alp cluster. This type II 
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PKS gene cluster contains two loci encoding minimal PKS, 
one complete (alpABC encoding respectively a KS, CLF 
and ACP subunit) and one incomplete (alpRQ, encoding 
respectively a KS and CLF subunit) which lacks an ACP 
encoding gene [54] (Fig. 4). Deletion of the alpR and alpQ 
genes revealed that their products are not involved in the 
biosynthesis of kinamycins or the orange pigment. AlpR 
and AlpQ, in association with an ACP, e.g. AlpC, could 
be responsible for the biosynthesis of another secondary 
metabolite. Interestingly, the two sets of genes are under 
the control of the same regulatory system. The alp cluster 
could thus be considered as a fusion of two clusters that 
would also share their tailoring enzymes.

Stambomycins

Among the S. ambofaciens ATCC 23877 secondary metab-
olite gene clusters unveiled by genome mining, a large type 
I PKS gene cluster located in the right arm of the chromo-
some at about 500 kb from the chromosomal end attracted 
our attention (Figs. 1, 5). Indeed, in silico analysis revealed 
that this gene cluster could be involved in the production 
of a novel macrolide and macrolides are at the origin of 
very important drugs used in human therapy, for example 
as antibacterial agents (e.g. erythromycin or spiramycin), 
as immunosuppressors (e.g. rapamycin) or as antifun-
gal agents (e.g. nystatin). Some macrolides also represent 
a new class of anticancer drugs and compounds such as 
epothilones and their derivatives are already on the market 
or in phase II or III clinical trials [27].

The first characteristic of this S. ambofaciens type I 
PKS gene cluster is its particularly large size: it spans 
about 150 kb and is in fact one of the largest type I PKS 
gene clusters ever described. The cluster contains no less 
than 25 genes (from samR0487 to samR0465) including 
nine PKS genes and 16 additional genes that flank and are 
interspersed within the PKS genes and encode proteins 
predicted to be involved in PKS substrate supply, post- 
and on-PKS tailoring reactions, deoxysugar biosynthesis, 
regulation and resistance (Fig. 5). The number of modules 
(25) identified within the PKSs and the number of enzy-
matic domains (112) identified within these modules using 
SEARCHPKS [74] are also particularly high. All the enzy-
matic domains were predicted to be functional except the 
last ketoreductase (KR) domain in module 24 (Fig. 5; two 
essential amino acids of the catalytic triad, a tyrosine resi-
due and an asparagine residue, are absent [59]). These data 
suggested the ability of S. ambofaciens ATCC 23877 to 
synthesize a molecule of high molecular weight. The order 
in which the nine PKSs act in polyketide chain assembly 
was deduced by the identification of the loading mod-
ule in SamR0467 (presence of a ketosynthaseQ domain at 
the N terminus; [9]), the identification of the termination 

module in SamR0474 (presence of a thioesterase domain 
at the C terminus; [19]) and by the assumption that the 
order of the seven other PKSs followed the order of their 
respective genes in the cluster. Analysis of the AT domains 
within each module suggested that the product of the PKS 
was assembled from 16 molecules of malonyl-CoA, eight 
molecules of methylmalonyl-CoA and one molecule of 
an unknown extender unit (loaded by the AT13 domain) 
[73, 74]. In addition, sequence analysis of the ketoreduc-
tase and enoylreductase domains allowed the prediction of 
the stereochemistry of each stereocentre of the polyketide 
intermediate produced by the PKSs [31, 36]. All together, 
these data allowed us to propose a structure of the final 
PKS-bound intermediate (Fig.  5) with the molecular for-
mula C61H107O18. Searches in chemical databases indicated 
that it was likely to be novel [37]. The final product of this 
large type I PKS gene cluster was in fact predicted to be a 
glycosylated lactone. Indeed, on the basis of the thioester-
ase domain, the polyketide intermediate was expected to be 
cyclized. The presence of five genes in the cluster homolo-
gous to spiramycin biosynthetic genes that are responsible 
for the synthesis of mycaminose (Fig. 5; [50]) and of a gene 
(samR0481) encoding a putative glycosyltransferase that 
could transfer, according to the analysis with SEARCH-
GTr [28], a mycaminosyl residue to hydroxyl groups 
in the product of the PKS, indicated that the final prod-
uct would be glycosylated. The three other biosynthetic 
genes encoded putative cytochrome P450 (samR0478 and 
samR0479) and a putative type II thioesterase (samR0475) 
and were expected to catalyse post-PKS hydroxylation 
reactions and hydrolysis of aberrant acyl groups attached to 
the ACP domains of the PKS, respectively [33, 55].

Unlike the alp cluster, the genes of the type I PKS gene 
cluster were silent under standard culture conditions [37]. 
Therefore, a method to specifically activate expression of 
this cryptic cluster was developed in order to get access to 
the potential novel macrolide. This method was based on 
the overexpression of a gene expected to encode a path-
way-specific regulator (heterologous expression approach 
was excluded at that time because of the large size of the 
cluster). Three genes encoding putative transcriptional reg-
ulators are located within the type I PKS gene cluster. Two 
of them, samR0468 and samR0469, code for a two-compo-
nent signal transduction system, with samR0468 coding for 
a response regulator and samR0469 for a histidine kinase. 
The product of samR0484 is a member of the LAL (Large 
ATP-binding LuxR) family. Since members of this family 
of regulators had already been described as activators of 
macrolide biosynthesis, such as PikD of Streptomyces ven-
ezuelae and RapH in Streptomyces hygroscopicus, which 
activate pikromycin and rapamycin production, respec-
tively [35, 72], we overexpressed the expected pathway-
specific regulatory gene samR0484 in the S.  ambofaciens 
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ATCC 23877 wild-type strain. The samR0484 gene was 
placed under the control the strong and constitutive pro-
moter ermEp* in the integrative and conjugative vector 
pB139 [71]. The presence of the recombinant plasmid in 

wild-type S. ambofaciens triggered the expression of all the 
silent genes within the cryptic type I PKS gene cluster.

Comparative metabolic profiling using LC–MS between 
the strain with ectopic expression of the LAL regulator and 
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the control strain (i.e. S. ambofaciens ATCC 23877 with the 
vector pIB139) revealed two peaks present only in the LAL 
regulator overexpressing strain [37]. Interestingly, these 
peaks were only detected from the mycelium extract of this 
strain but not from the supernatant extract, indicating that, 
at least in the growth conditions used, the corresponding 
metabolites were not secreted. Structural characterization 
of these new natural products was performed by mass spec-
trometry and NMR. In total, four forms of a 51-membered 
macrolide which was named stambomycin were character-
ized (isomers A, B, C and D; Fig. 5) [37].

Stambomycins are the first metabolic products identified 
in actinomycetes by overexpressing of a pathway-specific 
regulatory gene and activating a silent gene cluster. A simi-
lar strategy was initially and successfully applied in the 
fungus Aspergillus nidulans and led to the discovery of 
unique PKS-NPRS metabolites, the aspirydones A and B 
[8]. Interestingly, identification of LAL regulator genes in 
numerous cryptic biosynthetic gene clusters in actinomy-
cetes indicate that our approach can be applied as a general 
strategy for discovery of novel natural products [37].

The study of the stambomycin biosynthesis also revealed 
two originalities [37]. First, the large lactone ring of stam-
bomycins, resulting from the C1/O50 ester linkage, is likely 
due to a novel type of cyclization involving a cytochrome 
P450-catalysed hydroxylation of the polyketide chain 
rather than ketoreduction during chain assembly. Second, 
the hexyl or heptyl substituents at C26 are due to the load-
ing by the AT domain of PKS module 12 of very unusual 
extender units (hexyl/heptylmalonyl-CoA) onto the ACP 
domain of this module.

Finally, genome mining of S. ambofaciens ATCC 23877 
allowed the discovery of promising new molecules for anti-
cancer therapy. Indeed, the stambomycins showed signifi-
cant antiproliferative activities against various human can-
cer cell lines [37].

Antimycins and related volatiles

The respiratory chain inhibitors antimycins are strong anti-
fungal agents produced by several Streptomyces species. 
These compounds have been known since the end of the 
1940s when they were identified as highly active com-
pounds against the phytopathogen fungus Venturia inae-
qualis [41]. Although the structure of these antifungals was 
solved 40  years ago, nothing was known about the genes 
responsible for their biosynthesis until recently. Similarly 
to congocidine, the antimycin biosynthetic gene cluster was 
identified thanks to a genome mining approach although 
in a different way. A Streptomyces mutualist associated 
with attine ants, Streptomyces S4, was shown to produce 
the antifungals candicidin and antimycins (eight antimy-
cin compounds, including antimycins A1–A4, were isolated 

from this species [64]). On the basis of their structures, 
antimycins were expected to be at least partially synthe-
sized by an NRPS and genome analysis of Streptomyces 
S4 identified a hybrid NRPS-PKS cluster predicted to be 
responsible for the biosynthesis of antimycins. As expected, 
disruption of this cluster abolished the production of anti-
mycins [64]. Interestingly, blast analysis revealed that it 
was conserved in two other Streptomyces species, Strep-
tomyces albus J1074 and S. ambofaciens ATCC 23877, in 
which the cluster is located in the left chromosomal arm 
and spans from samL0362 to samL0378 (Figs. 1, 6). This 
strongly suggested that these species also had the potential 
to produce these antifungals [64].

Streptomyces ambofaciens ATCC 23877 was indeed 
shown by LC–MS analysis to produce antimycins A1 
to A4 and deletion of a locus of five genes (samL0365–
samL0369) within the cluster has confirmed its implica-
tion in the biosynthesis of the antifungals [63]. Studies 
have been also carried out on the biosynthesis of the rare 
3-aminosalicylate starter unit of the NRPS. This biosyn-
thesis involves the samL0365–samL0369 locus which 
encodes a protein complex similar to the multicomponent 
PaaABCDE oxygenase complex, which catalyses the oxi-
dative ring opening of phenylacetyl-CoA. The samL0365–
samL0369 locus has indeed been proven to be involved in 
the synthesis of the starter unit from tryptophan, via anthra-
niloyl-CoA, which undergoes an unprecedented oxidation 
and 1,2-shift of its carboxylic acid CoA moiety, likely via 
an epoxide intermediate [63].

Interestingly, the study of the antimycin cluster in S. 
ambofaciens ATCC 23877 revealed that it was also respon-
sible for the presence of the volatile compounds blastmy-
cinones and butenolides [62]. It was known for a long time 
that antimycins can easily undergo base-catalysed degra-
dation to blastmycinone derivatives and to N-(3-forma-
mido-2-hydroxybenzoyl)-l-threonine [66–68]. In addition, 
blastmycinones can form either butanolide compounds 
by deacylation or butenolide volatiles by elimination of a 
carboxylic acid [18]. Investigation by GC–MS of the vola-
tiles released by S. ambofaciens ATCC 23877 revealed the 
presence of different butenolide and blastmycinone deriva-
tives in the headspace extracts [62]. The structure of the 
blasmycinones was shown to coincide nicely with the main 
antimycins identified in this strain. Similarly, the bute-
nolides found amongst the volatiles matched the structure 
of the blastmycinones produced by the strain [62]. Thus, 
this strongly suggested that these two types of volatiles are 
derived from the antimycin biosynthetic pathway (Fig. 6). 
This hypothesis was confirmed by GC–MS analysis of 
the headspace extract of the S. ambofaciens mutant strain 
deleted for the samL0365–samL0369 locus. Indeed, in 
addition to being unable to produce antimycins, the mutant 
was defective in the production of the blastmycinone and 
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butenolide derivatives that were found in the wild-type 
strain [62]. It should be noted that it was the first time that 
butenolides were shown to derive from degradation of anti-
mycin compounds. The biological roles of these volatiles 
for the producer strain are still unknown.

Discussion

Access to the complete genome sequence allowed us to 
identify the potential of S. ambofaciens ATCC 23877 to 
synthesize natural products. Like in most of its conge-
ners, more than 20 secondary metabolite gene clusters are 
encoded within the chromosome. S. ambofaciens does not 
contain any mobile genetic element with such clusters like 
the linear megaplasmids pSLA2-L of Streptomyces rochei 
and pSCL4 of Streptomyces clavuligerus which are densely 
packed with large numbers of gene clusters for secondary 
metabolites [46, 47]. The ongoing exploration of S. ambo-
faciens genome has already led to the characterization of 
new gene clusters directing the biosynthesis of metabolites 
known to be produced by the strain (e.g. congocidine), to 
the identification of metabolites already characterized in 
other species but whose production by S. ambofaciens was 
not documented (e.g. kinamycins, antimycins), and to new 
gene clusters directing the biosynthesis of novel molecules 
(e.g. stambomycins). As the exploration continues, it is 
likely that it will result in the characterization of new clus-
ters and molecules because several of the identified gene 

clusters have no characterized homologues. It is interest-
ing to note that three secondary metabolites, kinamycins, 
stambomycins and antimycins, have great potential as anti-
tumour drugs [25, 37, 43]. Therefore, the availability of 
the cluster sequence and the easy genetic manipulation of 
S. ambofaciens ATCC 23877 make this strain a promising 
tool for development of anticancer agents.

Several of the genome mined clusters are conserved 
in its close relative S. coelicolor A3(2) allowing to pro-
pose a product associated with these clusters. For most of 
them, this has been experimentally demonstrated follow-
ing the availability of the genome (e.g. the siderophores 
coelicheline and desferrioxamines [5]) or independently 
(e.g. the volatiles MIB, geosmin and albaflavenone [14]). 
Interestingly, genome comparison between S. ambofa-
ciens ATCC 23877 and S. coelicolor A3(2) showed that 
the common clusters are not necessarily located within the 
conserved region, i.e. the core region which is highly syn-
tenic through the genus and contains most of the essential 
genes [7] and the parts of the chromosomal arms which 
are conserved between the two species [13]. Thus, some 
are located within the specific extremities of the genome 
of the two species (in S. ambofaciens, these regions cover 
about 1.3 Mb [13]). This is the case for the MIB and lan-
tibiotic biosynthetic genes located in the left and right 
arm, respectively (Fig. 1). This probably reflects the plas-
ticity of the Streptomyces genome which is prone to DNA 
rearrangements particularly in the terminal regions [42]. 
In contrast, specific clusters are not always located in the 
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species-specific regions. Some correspond to genomic 
islands that interrupt the conserved regions. Thus, in S. 
ambofaciens ATCC 23877, seven secondary metabolite 
gene clusters, including the duplicated kinamycin cluster 
and the stambomycin and antimycin clusters, are located 
within the 1.3-Mb specific extremities while six others, 
including the spiramycin and congocidine clusters, are 
encoded within conserved regions. In S. coelicolor A3(2), 
clusters such as those responsible for the biosynthesis of 
actinorhodin, undecylprodigiosin, coelimycin and CDA 
also correspond to specific genomic islands. These clusters 
would have a recent origin and probably result from recent 
acquisition by horizontal transfer events although one can-
not exclude the possibility that, at least for some of them, 
they were once present in a Streptomyces species but have 
since been lost.

Genome sequence analysis has highlighted the poten-
tial of S. ambofaciens ATCC 23877 to produce natural 
products and has confirmed that it can be considered as a 
source of new bioactive molecules, as shown by the dis-
covery of the stambomycins [37]. This potential has been 
determined thanks to bioinformatic tools such as ant-
iSMASH [45] that allows efficient detection of second-
ary metabolite gene clusters belonging to a large range 
of classes or more specialized programs like NP.searcher 
[44] or NaPDos [76] mainly focusing on PKS and NRPS 
gene clusters. Nevertheless, S. ambofaciens likely has the 
capability to produce more natural products than those 
predicted by these approaches. Indeed, it is reasonable to 
consider that its genome contains genes or gene clusters 
directing the biosynthesis of products synthesized by still 
uncharacterized genes/enzymes. There are an increasing 
number of examples of products whose biosynthetic gene 
clusters could not have been detected by sequence compar-
ison searches like the modified cyclic dipeptide alboursin 
[39] or the thiopeptide antibiotic thiostrepton [32]. There-
fore, it is likely that S. ambofaciens and more generally the 
bacteria of the Streptomyces genus still contain a hidden 
treasure in terms of secondary metabolites and deserve our 
attention in the race for the discovery of novel bioactive 
compounds.
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